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We consider a floating or submerged body in deep water translating parallel to the 
undisturbed free surface with a steady velocity U while undergoing small oscillations 
at frequency a. It is known that for a single source, the solution becomes singular 
at the resonant frequency given by z = Uw/g=f, where g is the gravitational 
accekration. In this paper, we show that for a general body, a h i t e  solution exists 
as z -, i if and only if a certain geometric condition (which depends only on the 
frequency w but not on U) is satisfied. For a submerged body, a necessary and 
sufficient condition is that the body must have non-zero volume. For a surface- 
piercing body, a sufficient condition is derived which has a geometric interpretation 
similar to that of John (1950). As an illustration, we provide an analytic (closed-form) 
solution for the case of a submerged circular cylinder oscillating near z = i. Finally, 
we identify the underlying difficulties of existing approximate theories and numerical 
computations near z = i, and offer a simple remedy for the latter. 

1. Introduction 
The oscillatory motion of a translating body in the presence of a free surface is a 

problem of fundamental theoretical interest. For small motion amplitudes compared 
to body dimensions, it is traditional to linearize the problem about that for a steady 
flow. Because of its importance to motions and seakeeping of ships (and to offshore 
structures operating in currents), this problem has been the subject of a large number 
of investigations. 

The problem is classically solved by approximating the body by a distribution of 
singularities typically taking advantage of the slenderness (or thinness) of the body 
(e.g. Hanaoka 1957; Havelock 1958; Newman 1959; Maruo 1967; Ogilvie & Tuck 
1969; and Newman 1978, which also contains an extensive review). Satisfactory 
predictions can generally be obtained except in the neighbourhood of resonance 
given by the frequency (0) and forward speed (U) combination z = U o / g  = a, 
where g is gravitational acceleration. Despite a substantial body of work for the 
general linearized problem, the nature of the solution near this critical frequency for 
a realistic body has not been satisfactorily resolved. 

For a single source, it is well known that the Green function becomes unbounded 
at z = f (Haskind 1954; Wehausen & Laitone 1960). Physically, this may be 
explained in terms of the group velocities (in still water) of certain components of 
the accompanying wave which approach U as z -+ (from below). The associated 
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energy can no longer be radiated away, and the amplitudes of these wave components 
tend to grow indefinitely. Since the problem for a general body can, in principle, 
be represented by an appropriate distribution of such sources, it is widely accepted 
that the resulting seakeeping problem must likewise be singular at z = (e.g. Dagan 
& Miloh 1982). This appears also to be confirmed by existing approximate theories 
and calculations (e.g. Newman 1959; Wu & Eatock Taylor 1988) suggesting that this 
difficulty may be inherent in the linearized problem. 

The present work is motivated in a large part by careful numerical calculations 
for the case of submerged circular and elliptical cylinders by Grue & Palm (1985) 
and Mo & Palm (1987). For the submerged circular cylinder, Grue & Palm (1985) 
offered strong numerical evidence that the amplitudes of the resonant upstream and 
downstream waves approach the same finite limit as z + i. They were able to support 
this by examining the coefficients of an infinite set of equations which resulted from 
Fourier discretizations of the source strengths on the circle. Since their equations are 
singular at z = i, they considered the problem undetermined at this limiting value. 
Similar finite results were obtained for the submerged ellipse near z = a by Mo & 
Palm (1987). From these results, they again reasoned (based on an integral equation 
similar to (3.3)), that the amplitudes should be finite as z + 

In this paper, we offer a formal proof that a finite solution exists at z = a for 
a general class of bodies. In particular, a simple necessary and sufficient geometric 
condition is found for such finite solutions. This condition depends on and must 
be satisfied for all possible values of the frequency o but is not a function of U. 
When the body is submerged, the condition is satisfied if and only if the body has 
non-zero volume (e.g. a submerged cylinder but not a point source or dipole). For a 
body intersecting the free surface, sufficient conditions can be obtained by considering 
deviations of the body from a vertically uniform geometry of the same waterplane 
and draught. The resulting condition has a similar geometric interpretation to that of 
John (1950) in another context (the uniqueness of the solution of the floating body 
motion problem without forward speed). 

In this paper, we concentrate only on the neighbourhood of 6’ = (1 - 4z1<1. 
The linearized boundary-value problem and the behaviour of the Green function 
near z = i are reviewed in $2. We reformulate this problem as source-distribution 
boundary-integral equations on the body for both submerged ($3) and surface- 
intersecting bodies ($4) and discuss the solutions as z -+ $. It is shown that the 
solutions are bounded for a general class of geometries satisfying an integral condition 
with simple geometric interpretations. As an illustration, we consider in 95 the special 
case of a submerged circular cylinder and obtain a closed-form (finite) solution for 
motions in the neighbourhood of z = i. 

For simplicity and to obtain closed-form answers, we present the problem mainly 
in two dimensions although similar results and geometric conditions follow directly 
for three-dimensional bodies. This is outlined in $6. Finally, in the discussion, $7, 
we identify the difficulties inherent in existing approximate theories and in direct 
numerical solutions of the integral equations as z + i. In the latter case, a simple 
remedy is provided based on an alternative form of the integral equation valid for 
small d2. 
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2. The boundary-value problem and Green function 

We consider the generalized Kelvin-Neumann problem (Haskind 1946) of a two- 
dimensional body translating with constant forward speed U parallel to the undis- 
turbed free surface in deep water while at the same time undergoing small oscillatory 
motion and/or encountering small-amplitude waves at frequency o. A Cartesian 
coordinate system 0-xz is chosen fixed to the mean position of the body, with 0-x 
in the undisturbed free surface, x pointing in the direction of forward speed, and z 
positive upwards. The fluid is assumed inviscid and incompressible, and the motion 
irrotational. The flow can be described by a velocity potential: 

@*(x,z, t )  = $(x,z) + q x ,  z ,  t )  = $(x,z) + Re(~(x,z)e’“’‘}, (2.1) 
where 6 is the potential due to the steady forward motion of the body, and @ the 
unsteady potential associated with the body oscillations and/or incident waves. We 
focus on the unsteady potential 0 and do not further concern ourselves with 6 which 
is related to the steady wave resistance problem. 

The time-independent potential 4 satisfies Laplace’s equation within the fluid and 
vanishes at large depth, V4 + 0 as z + -a. For small-amplitude incident waves or 
body motions, the linearized free-surface condition is 

on z = O .  a 84 (io - u--)~$ + g- = o ax f3Z 

The kinematic boundary condition applied at the mean position of the wetted body 
surface, S B ,  can be written as 

where n = (n,,n,) is the unit normal out of the body. In (2.3), the forcing term 
f(x,z) is given in terms of the imposed body oscillations and incident wave as well 
as the so-called ‘m-terms’ due to the steady potential C$ (e.g. Newman 1978). The 
boundary-value problem for $ is complete with the imposition of an appropriate 
radiation condition, in this case a physical requirement that only waves with group 
velocity greater than (less than) the forward speed can be present far up (down) 
stream of the body. 

At this point, we should remark that a general uniqueness theory for the boundary- 
value problem with the free-surface condition (2.2) is as yet unavailable. Despite this, 
the solution of the present problem has been pursued in a large number of studies (see, 
e.g. Newman 1978). For submerged bodies in steady motion, the Kelvin-Neumann 
problem is shown (with some restrictions, see Kochin 1937; Dern 1980) to possess 
a unique solution. We are unable to extend this result and simply postulate the 
uniqueness of the stated problem at least for the general case when z # i. 

We define a Green function, G(x,z;x’,z’), which is harmonic everywhere in the 
fluid except at (x’,z’) where it is source like. In addition, G satisfies the linearized 
free-surface condition (2.2), the radiation condition, and vanishes at large depth. 
Physically, G represents the potential due to a translating point source, velocity U ,  
with a pulsating strength, frequency a. 

The solution for G was obtained by Haskind (1954), which we rewrite as follows: 

G(x,z;x’,z’) = Go + GI + G2 + G3 + Gq, (2.4) 

(2-5) 
where 

Go = i{ln[(x - x ’ ) ~  + ( z  - z’)*] - ln[(x - x ‘ ) ~  + (z + z ’ ) ~ ] }  , 
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m ,  (2.9) ‘7C ek4[i(~-x’)+(~+~’)] - 
G4 = 

(1 + 441 
and Cauchy principal-value integrals are indicated. In the above, we define z = U o / g  
and the four wavenumbers are defined by 

(2.10) K U 
k1,2 = ~ ( 1  - 22 f (1 - 42)i) ; k3,4 = - (1 + 22 IfI (1 + 42);) ; 

872 

where IC = 402/g. 
The far-field wave behaviour can be readily seen from (2.10). For z < $, all four 

wavenumbers are real and the kl, k3, and k4 waves propagate downstream (behind the 
body), while the k2 wave appears upstream. For z > i, k3 and k4 are still real, whereas 
kl and kZ become complex. As a result, the k3 and k4 waves remain downstream, 
while the kl and k2 waves are evanescent. 

Our interest is in the neighbourhood of z = f, where kl and k2 approach a common 
value, and GI and G2 become singular. Physically, this corresponds to the kl and k2 
waves merging into a single wave with group velocity equal to U. For a single source, 
the energy of this wave cannot radiate away to infinity resulting in an unbounded 
buildup of energy, at least in the context of linearized theory (see Dagan & Miloh 
1982). The key finding of this paper is that for an actua2 physical body, the wave 
sources of non-trivial strength may combine in such a way that the total solution 
remains finite as z --+ i. We prove that this is indeed the case subject to a necessary 
and sufficient condition on the geometry of the body. 

For convenience, we define d2 = 11 - 421. For S 2 4 ,  we have from (2.10): 

h.2 = K [ 1  + W)l 9 a2*1 (2.1 1) 

In the following, we consider asymptotic expansions valid for U(X - x’16 = o(1) as 
6 + 0. Note the limit of 1x1 --+ 00 such that ~lx-x’18 + co while 6-4 requires special 
care and is taken up in the Appendix. 

From (2.6), (2.7), we write 

s 2 4 .  (2.12) 

In (2.12), G’ = 0(1) results from the principal-value integrals in (2.6) and (2.7), and is 
given by 

-G‘ + 1 = U[-i(x - + (z + Z’)le~[-i(~-~‘)+b+z’)l em[-i(x-x’)+(z+z’)l dm . (2.13) 
1 
4 
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3. Submerged bodies 

1972) : 
We construct a solution of the problem in terms of a source distribution (Brard 

$(x, z) = lB (~(x’, z’)G(x, z; x’, z’)ds’ , 

m(x,z) + ~ B . ( i , z ’ ) ~ G ( X , z ; X ’ , z ‘ ) d s ’  = f(x,z) , (x,z) E Ss. 

(3.1) 

where (~(x’, z’) is the source strength distribution on the body. Clearly, (3.1) satisfies all 
the conditions of the boundary-value problem except for that on the body. Imposing 
the body boundary condition (2.3), we obtain an integral equation for the unknown 
source strength (T: 

a 
(3-2) 

As with the original boundary-value problem, we assume that a unique solution to 
(3.2) exists in general for z # i. As z --+ i ,  the kernel of (3.2) becomes unbounded 
everywhere due to the presence of GI and G2. Our interest is in this neighbourhood, 
so that for 6 * 4 ,  we substitute the asymptotic behaviour of GI + G2 in (2.12) into 
(3.2) and rewrite the integral equation as 

271K 

6 iB ~(x’, z’)eK(iX’+Z’)ds’ m(x, z )  + - (n, + in,)eK(-iX+Z) 

+ f, o(x’,z’)&(x,z;x’,z’)ds’ = f(x,z) + 0 ( 6 ) ,  &*.el, (3.3) 

where the principal-value integral involving (? = G + Go + G3 + G4 is continuous as 
? +  i. 

We now define the Kochin function 

a = lB (~(x, z)e@+’)ds , 

and rewrite (3.3) as 

1 
- - { (~(x’, z’)Gn(x, z ;  x’, z’)ds’ + fo + O(6) , 

71 S B  

(3.4) 

d2<1 * (3.5) 

The forcing function f ,  which is due to the incident and steady Kelvin waves as well 
as imposed body motions, is, in general, finite and assumed to be O(1). 

To determine the magnitude of a, we substitute Q in (3.5) into (3.4), and solve for 
a. After using the divergence theorem, we obtain 

6 
a =  (~(x’,z‘)P(x’,z‘)ds‘] + 0(d2) , 

where the kernel P is given by 
d 

P (x’, z’) = Jf,.K(ixtz) an (G’ + Go)ds , 

and the constants B and r a r e  given by 

B = jYB f(x, z)eK(ixSr)ds, 
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r = lB (-inx + n,)e2Kzds. (3.9) 

B and P are independent of 6 and can be at most O(1). In (3.9), r i s  a function of 
the body geometry only for a given frequency K .  

Depending on the body geometry, there are now two possibilities. If I-# 0, we 
substitute (3.6) back into (3.5) to obtain a new integral equation for Q:  

(nx + inz) eK(-ix+z) lB CT(X’, z’)P(x’, z’)ds’ 
6 / 2 ~  + i T  ACT(X,Z) - 

~(~’,z’)G;,(~,~;x’,z‘)ds’ = F(x,z) + O(6) , 
+ iB 

where 

F(x, z )  = f(x, z )  - 9- (nx + inz) eK(-in+z) = O(1) . 
6 / 2 ~  + i T  

(3.10) 

(3.11) 

The kernels in (3.10) are bounded and continuous as z + i. Thus (3.10) is regular 
and, for sufficiently smooth SB,  has a bounded solution Q = 0(1) except possibly at an 
enumerable number of discrete values of K for which the Fredholm determinant van- 
ishes (e.g. Ursell 1968; for steady motions and two- and three-dimensional submerged 
bodies these are shown to be absent for sufficiently small Froude numbers, Kochin 
1937). This is a difficulty associated with the general problem and not specifically 
with the limit 6 + 0. Since our interest is in the latter, we do not consider this 
possibility any further. From (3.6), it is also clear that u = O(6)  for I-# 0. 

We remark that for arbitrary geometries, (3.10) can be solved in general by direct 
numerical means for the finite solution. The velocity potential is finite as z + and 
is given by 

4(x,z) = - 27& eK(-ix+z) ~(x’,z‘)G(~,z;x’,z’)ds’ + O ( 6 )  , (3.12) 
6 

which is bounded for r# 0. Note that in view of the approximation in (2.12), (3.12) is 
strictly valid for rcIx-x’I6 = o(1). The potential in this case is in fact finite everywhere 
even for 1x1 -+ 00 (see Appendix). 

If I-= 0, then from (3.6), a is at least O(1). It follows from (3.5) that Q = O(6-’) 
which becomes unbounded as 6 + 0. 

In summary, then, a finite solution to the problem exists as z + if and only if 

r= /sB(-inx + nZ)e2Kzds # 0 ,  (3.13) 

which is a condition that depends on the geometry SB and the frequency K = 4w2/g 
only. If T =  0 for any frequency IC, then a forward speed U2 = g / 4 ~  can always 
be found for which the solution becomes unbounded. Physically, (3.13) represents a 
requirement that the resonant wave components must not be orthogonal to the body 
boundary condition. 

With the use of the divergence theorem, we obtain immediately 
I ) *  

r= 2~ ]IB e2“dS , (3.14) 

where B is the (mean) body section. Since the integrand in (3.14) is positive definite, 
r # 0 if and only if the (submerged) body has non-zero cross-section area. The 
known singular solution for a point source turns out to be a special case of r= 0. 
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4. Surface-intersecting bodies 

An analogous result can be obtained for the case where the body intersects the 
free surface. We assume (locally) vertical intersections, and again write the potential 
in terms of a body surface source distribution (e.g. Ursell 1980) 

$(x,z) = lB o(x’,z’)G(x,z;x’,z’)ds’ - a[a-G(x,z;x-,O) + o+G(x,z;x+,O)] , (4.1) 

where a = U 2 / g ,  and ok represent the source strengths at the two intersection points, 
x = xk. 

For d 2 4 ,  we proceed as before and write 

(n, + in,)eK(-’X+Z) - i:(x’, z’)e,(x, z ;  x’, z’)ds‘ 
2nK-a‘ 7co(x,z) = - - 

6 
+a[o-e,(x,z;x-,O) +o+(?,(x,z;x+,O)] + f ( x , z ) + 0 ( 6 ) ,  (4.2) 

where the Kochin function a’ is defined to be 

o(x, z)eK(ix+z)ds - a[o-eiKx- + o+eiKX+] . (4.3) 

Again, it is clear from (4.2) that o = 0(1) if a’ d O(6). Otherwise, o becomes 
unbounded as z + a. 

a’ = lB 
Substituting (4.2) into (4.3), we have 

6 
(6 + 2ilcT)n 19 i- Yf - lB @’, z’)Q(x’, z’)ds’] + O(d2) , cc’ = 

where the kernel Q is given by 

Q(x’, z’) = iBe.,(x, z ;  x’, z’)eK(ix+z)ds , 

(4.4) 

(4.5) 

and the constant YP is defined as 

a[o-e,(x,z;x-,O) + o + ~ , ( x , ~ ; x + , O ) ] e ~ ( ~ ~ + ~ ) d s  - mio-eiKx- + o+eiKxt]. (4.6) 

9, % and Q are independent of 6 and can be at most O(1). If T= 0, CI’ = O(1) and 
o = O(S-l), and no finite solution exists as z -+ a. If r# 0, a’ = O(6) and 0 = 0(1) 
and we may substitute (4.4) back into (4.2) to obtain a new integral equation for o: 

no(x,z) - ( n x  + in21 eK(-ix+z) lB o(x’,z’)Q(x’, z’)ds’ 
6 / 2 ~  + i T  

+ i;(x’, z’)G,(x, z ;  x’, z’)ds’ 

-u[o-e,(x,z;x-,O) +o+e’n(X,Z;X+,O)] =F(x ,z )+H(x ,z)+0(6) ,  (4.7) 

where 

Yf nx + in, eK(-ix+z) H ( x , z )  = - 
6 / 2 ~  + i T  (4.8) 

Now, every term in (4.7) is finite as z + 4, so that (4.7) is regular and a bounded 
solution for o can be obtained, after which the Kochin function cc‘ can be determined 
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L L 4  

FIGURE 1 .  Geometric condition for a body intersecting the free surface. (a) B‘ < 0; 
(b) B’ > 0; (c)-B; = Bi < 0. 

from (4.4). The problem is thus solved with 

4(x ,z )  = - %Cia’ eK(-ix+z) + lB cr(x’,z’)~(x,z;x’,z’)ds’ 6 

-a[o-G(x,z;x-,O) +~+G(x,z;x+,o)] + 0 ( 6 ) ,  (4.9) 
which is finite. 

solution is (3.13), i.e. r# 0. Use of the divergence theorem here yields 
As with the submerged case, the necessary and sufficient condition for a finite 

r= 2u 11 e2“dS - L , (4.10) 

where L = x+ - x- > 0 is the waterline width of the body. Let us divide the mean 
body section B into two parts: B = B, + B’, where B,  is the rectangle with width 
L and depth D equal to the maximum draught of the body, and B’ the difference 
between B and B (see figure 1). The double integral over Bo can be evaluated 
yielding 

r = 21c /l, e2K‘dS - Le-2KH. (4.1 1) 

If the body B is completely enclosed by Bo, B‘ is negative and so also is integral 
over B’ in (4.1 1) negative. Whence r is negative definite and B c Bo is a sufficient 
condition for (3.13). 

If B # Bo (for example, figure lb), the integral over B’ may be positive, and a 
value of K may exist for which r = 0. To illustrate this further, consider the case 
of a circular cylinder, radius R, which intersects the free surface (for simplicity still 
assuming the body to be locally vertical at the intersection points). If the centre of the 
cylinder z, is above the free surface, z,  > 0, then B c Bo and r i s  negative definite. 
If the cylinder is completely submerged, z,  < -R, then from (3.14), r is positive 
definite. For the intermediate case of -1 < z,/R < 0, however, (4.11) shows that r i s  
negative for K = 0 but increases monotonically with K and eventually changes sign. 
For any z,/R E (-l,O), there exists a particular value of the frequency K = tc0 > 0 for 
which I-= 0. It follows that a finite solution does not exist at that frequency and at 
a forward speed corresponding to z = given by U,2 = g/4lcO. Figure 2 shows a plot 
of KOR as a function of j3 = sin-’(-z,/R) for this case. Note that lcoR - - In p / p  as 
p + 0. 

The sufficient condition on the geometry, B c B0, is similar to that of John (1950) 
for the motion of a floating body (without forward speed) which requires that for 
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PI% 
FIGURE 2. Dimensionless frequency KOR for r= 0 as a function of the 

submergence of a floating circular cylind r. 

every point of the mean free surface (in this case x c$ [x-,x+]), the entire vertical 
segment below it must not intersect the mean body. The actual requirement of r# 0 
is, however, more general (less restrictive) and admits, for example, a geometry such 
as that depicted in figure l(c). 

5. Application to a submerged circular cylinder 
As an illustration, we consider the special case of a translating and oscillating 

submerged circular cylinder near z = i. Grue & Palm (1985) investigated this 
problem computationally using a source distribution (cf. (3.2)) represented by Fourier 
series. They obtained solutions very close to z = f although the kernel of their 
integral equation becomes everywhere singular as z + a (cf. (3.3)). In this section, we 
obtain the finite solution to this problem in the neighbourhood of z = ( ~ 3 ~ 4 ) .  In 
particular, we provide closed-form asymptotic solutions for the far-field amplitudes 
of the kl and k2 waves (which have a common finite value at z = a). 

A local cylindrical coordinate system (r,O) is placed at the centre of the cylinder, 
which is at a depth h below the mean water level. Thus, r2 = x2 + (z + h)2 and 8 is 
measured counterclockwise from positive x. The geometry parameter r for a circular 
cylinder can be found in closed form 

r = 2 7 c ~ e - ~ ~ ~ 1 ~  ( ~ K R )  , (5.1) 

in which R is the radius of the cylinder and I ,  the modified Bessel function of the 
first kind. 

For a circular cylinder, we can easily prove the following relationship: 
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Since no fluid crosses the surface of the rigid body, the net source vanishes. As a 
result, there is no Go term in nor in the kernel P. Given the forcing function F ,  
the solution to the integral equation (3.10) must, in general, be obtained numerically. 
For relatively deep submergence, rch, however, the problem simplifies. In particular, 
the amplitudes of the kl,2 waves can be obtained in closed form and interestingly do 
not explicitly depend on the source strength u. 

The Kochin function, 01, is calculated from (3.6). Since the kernel P (without Go) 
diminishes with submergence ~h like e-'* (cf. (3.7)), the second term in (3.6) can be 
neglected for large submergence: 

which is O(eKh) since I-= O(epzKh) from (5.1). To determine the potential, we substitute 
= G'+G3 +G4 into (3.12). Since G' diminishes as e-Kh for sources on the cylinder, its 

contribution to the IC wave is small compared to that due to tl which is proportional 
to eKh. The potential field is then given by 

From the dynamic free-surface condition, the surface elevation q is given by 
1 a q ( x )  = --(iw - V - ) + ( x , O )  . 
g a x  (5 .5 )  

The wave elevations far upstream and downstream of the body are 

q = A2e-ik2X , x-++oo, (5.6) 
q = Ale-iklx + ~ ,e ' "3~  + , x -+ -a , (5.7) 

with the wave amplitudes given from (5.4) by 

From (5.8), it is clear that are independent of the source strength u. Thus, the 
amplitudes of the kl and k2 waves are explicit and do not require the solution of the 
integral equation (3.10). 

In principle, it is necessary to solve the steady problem first to provide for the body 
boundary condition f ( x ,  z). Again for relatively deep submergence, we neglect the 
free-surface effect and write the potential for steady flow past the circular cylinder as 
that around a dipole 

$(x,z) = - u x  1 + - ( :z2) (5.10) 

Considering only the radiation problem, f is then given by 

f(e) = cx (iocos 8 + (5.11) 
R R 

where cx and (, are respectively the amplitudes of the sway and heave motions of the 
body. 
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FIGURE 3. Amplitudes of the kl (upper branch) and k2 (lower branch) waves radiated by the 
heave and sway oscillations of a submerged circular cylinder as a function of z = U o / g .  
Asymptotic solution (5.13) (--); direct numerical calculations (Grue & Palm 1985) (- - -). 
(Fr = U / ( g R ) f :  =0.4, h/R=2).  

For the calculation of the coefficient 9, we first replace (x,z) by the corresponding 
cylindrical coordinates (r, e), and expand the exponential in (3.8) in Taylor series. The 
integration over 8 can be readily carried out yielding 

9 = nrcR2e-Kh(W + I C U ) ( - [ ~  + ilz) , (5.12) 

which is the limiting value for 9 with d 2 4 .  For somewhat larger 6, the accuracy 
of (5.12) is improved by simply replacing the wavenumber IC with kl,2 respectively for 
&. (This is equivalent to factoring out e k l z z  rather than eKz in (2.12).) Substituting 
B and r i n t o  (5.8), we obtain finally 

2n: kl,2Re-kl.2h 1 * (1 - 42)f -- - 4 2  

it;x + 5, -i( 1 - 42) f- + ~ z I c R I ~  ( ~ I c R ) ~ - ~ " ~  

where F, = U/(gR)f is the Froude number. 
Equation (5.13) is consistent with the known result for a submerged circular 

cylinder that the far-field waves generated by unit sway or heave motion have the 
same amplitude but are shifted in phase by in. 

Figure 3 plots (5.13) for A1,Z as a function of z for the parameters h/R = 2 and 
F, = 0.4. The limiting value of &/(iCx + rz) as z + is 4.018 .... These parameter 
values for h / R  and F, coincide with one of the two cases computed by Grue & Palm 
(1985) for which they provide values for z very close to i. For comparison, their 
numerical values are reproduced in figure 3. The comparison both in terms of the 
magnitudes and asymptotic slopes is quite satisfactory for this moderate submergence. 

at z = as a function of wave frequency KR Finally, we consider the value of 
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e-& A 
i4-x + 4-z 

0 1 2 3 4 5 
KR 

FIGURE 4. Limiting amplitude at z = Uw/g = of the k l ~  waves due to the. forced heave and 
sway oscillations of a submerged circular cylinder as a function of the dimensionless frequency KR. 
(h /R = 2). 

(= (2Fr)-2). Evaluating (5.13) at z = i, we obtain 

(5.14) 

Figure 4 shows a plot of this limiting amplitude normalized by e-Kh. As a check, 
at the other value of F, = 1.0 (KR = 0.25) computed by Grue & Palm (1985), the 
extrapolated value at z = from their curves again agrees well with the value of 
A1,2/(i[x + [,) = 0.799 ... given by (5.14). For low frequency (and large U), (5.14) has 
the limit of as KR + 0 - a surprisingly simple result. For high frequency, ~ R s l ,  
the amplitudes vanish exponentially, Al,2e-Kh/(i[x + rz) - ni (KR) fe-2KR. 

6. Generalization to three dimensions 
The foregoing analyses and results can be generalized to three dimensions. The key 

requirement is the separability of the dependence on x and n‘ in the leading-order 
term of the Green function for d 2 4  (cf. (2.12)) leading to the factoring of the Kochin 
functions tl and a’ (cf. (3.9, (4.2)). 

The three-dimensional Green function for this problem (e.g. Wehausen & Laitone 
1960) can be rewritten for z c as 

h(8, k)dk 
1 4. d8 G ( x , ~ , z ; x ’ , ~ ’ , z ’ )  = - - -+- 
I rf :l (1-4zcos8); 

+”= d8 “ 1  1 h(8, k)dk, (6.1) 
4. (1-4zcos8)4 1 (k-k3 - m) 
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in which 

(6.3) 

(6.4) 

h(0, k )  = k cos[k(y - y’) sin ~]ekl(z+z’)-i(x-x’)cos81 

I - ~ ~ C O S ~ T ( ~ - ~ ~ C O S O ) ~  

8z2 cos2 0 k1,2 = lc 

The wavenumbers k3 and k4 have solutions of the same form as kl and k2. To satisfy 
the radiation condition at infinity, the integration paths for k over the singularities 
in (6.1) are defined as k, - if, k2 + ie, k3 - ir, k4 - ie as E. + O+. After the use 
of the Plemelj formula, the k integrals reduce to Cauchy principle-value integrals 
plus the contribution from the four singularities at kl, k2, k3 and k4. As z + a, the 
term (1 - 42 cos O)-f. becomes unbounded along 0 = 0. Thus G is dominated by the 
integration near 0 = 0, i.e. 

G(x, y ,  z ; x’, y’, z’) = - h(0,k)dk 

It can be shown that the double integral in (6.5) remains finite as z -+ i. By expanding 
cose in Taylor series about 8 = 0, the single integral can be carried out yielding 
finally 

(6.6) 
The result is identical for z .--, ($)+ and can be obtained similarly by considering this 
limit for the expression of G for z > :. 

We now note that the dependence of G on x, x’ in (6.6) is identical to (2.12) for the 
two-dimensional case. The analyses in $42, 3 thus follow directly leading to geometric 
conditions (3.14) and (4.10) for submerged and surface-intersecting bodies respectively. 
The integrands remain identical, but now the integrals are to be performed over the 
mean two-dimensional surface of the body. For (4.10), the waterline width L is now 
replaced by the waterplane area of the body. 

G(x,y,z;x’,y’,z’) = i82/2~ln(l  - 4,)ferc[(zfz’)-i(x-x‘)l + 0(1) as z + (:)- . 

7. Discussion 
The present findings can be motivated somewhat by physical arguments. Although 

the single source (Green function) becomes unbounded everywhere as z -+ i, the 
distribution of such sources on the body satisfies a finite forcing. Physically, this 
requires that the Kochin function a/6,  which measures the net contribution of the 
sources at a fixed point, remains finite (i.e. a < O(6))  as 6 -+ 0. The necessary and 
sufficient condition for this to be true for a given body is the geomtric condition 
r# 0, a function of the frequency K but not of U. We reason that r# 0 is in effect 
a requirement that the Green function (in fact just the resonant kl,* waves) is not 
orthogonal to the boundary condition on the body. 

We note that the present problem is a classical one for which a number of 
approximate theories (e.g. Havelock 1958; Newman 1959; Dagan & Miloh 1981) 
exist, all of which indicate that the solution to the problem is singular as z --f $. 
The apparent contradiction with the present finding turns out to be the result of a 
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common feature of the existing theories, namely, that the body boundary condition 
is enforced only in an approximate manner. 

Consider, for example, a submerged circular cylinder represented by a single dipole 
Green function Gx at the centre. For 7 not near i, the error in the normal velocity on 
the body surface is e - ecZKh which vanishes as the body submergence increases. For 
6 2 4 ,  however, 6 - e-2Kh /6 since G,, - 0(6-’), and the approximation is unacceptable 
as z 4 for any finite ~ h .  Interestingly, for a point-like body, which may be a valid 
approximation for a very deeply submerged object, I-= 0 according to (3.14). The 
solution at z = 

It is noteworthy that existing numerical solutions to this problem (e.g. Grue & Palm 
1985; Wu & Eatock Taylor 1988) have likewise met with difficulties close to 7 = i. 
The computational difficulty arises from a direct solution of the integral equation 
(3.2) as z + $. From (3.3) and dividing by (n, + inl)eK~-ix+z)/6, we have 

f: Liu and D. K .  P .  Yue 

is then in fact unbounded and is consistent with existing results. 

In a typical numerical solution, (7.2) is discretized by subdividing SB into N segments, 
and local basis functions are assumed for the source strength CT over each segment, 
say resulting in N unknown values for 0. Equation (7.2) is then collocated at N 
selected points (say one in each segment) resulting in a system of N linear equations 
for the N unknowns. The resulting coefficient matrix may be formally expressed as 

where [A,] and [Az] are the N x N influence matrices corresponding to the first and 
second terms respectively on the left-hand side of (7.2) and are formally independent 
of 6 .  As 7 + a, (7.2) reduces to [Al] + O(6) .  From (7.2), it is clear that [Al] is 
not a function of the field point x. Thus, the coefficient matrix has identical rows 
regardless of the position of the collocation points and is singular. The nature of the 
computational difficulty in the solution of (7.2) for d 2 e 1  is hence clear. 

It is useful to point out that our analysis in &2, 3 provides a simple remedy for the 
computational problem. For z near the critical frequency, the numerical difficulties 
are easily avoided by solving the regular equations (3.10) for a submerged body or 
(4.7) for a surface-piercing body instead of the singular equation (3.2). 

This research is supported by grants from the Office of Naval Research. 

Appendix. The velocity potential at large distances 
In this appendix, we consider the behaviour of the solution in the limit 1x1 -+ 00 such 

that iclxld + 00 while 6 4 .  For simplicity, we consider the case of a two-dimensional 
submerged body. 

As 1x1 + 00, GO vanishes and the principal-value integrals in (2.6) to (2.9) can be 
integrated analytically via contour integration. For x -+ +a, G I ,  G3, and G4 vanish, 
while 
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For x + -a, GZ vanishes, while 

i27E ekl [-i(x-x’)+(z+z’)] GI N 

(1 - 444 9 

-. 
+12.n ek3,4[i(x-x’)+(z+r’)] 

(1 + 444 G3,4 - 
Substitution of (Al)-(A3) into (3.1) gives 

for x -+ -a. In the neighbourhood of 6 4 ,  we expand the kernel ek1B2(ix’fz‘) in Taylor 
series about k1,2 = IC: 

[I k 21c(ix‘ + z‘)6 + O(S2)] , d 2 < 1 .  (A 6 )  

(A 7) 

ekl,z(ix’+r’) = eK(ix’+z’) 

After substituting (A 6)  into (A 4) and (A 5 ) ,  we obtain 

~ ( x , z )  - i27c(a/6 - y)ek2f-ix+z) + O ( 6 )  
for x -+ +a, and 

CJ(X’,Z’)(G~ + G4)ds’ + O(6) (A 8) 
+ L +(x, z )  - i2n;(a/6 + y)ekl(-iX+Z) 

for x + -a. Here, the constant y is given by 

and can formally be at most O(1) for finite 6. For r# 0, a/6  = 0(1) and cr = O(1). 
Thus the potentials in (A7) and (A8) are bounded as 6 --+ 0. 

We remark that the kl,z potentials in (A8) and (A7) respectively approach the 
same finite limit as 6 -+ 0. This is due to the fact that y is O(6)  which can be shown 
starting from just before (2.12). The analysis itself is a detail and is omitted here. 
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